
Lyric Bot - Stylized Lyric Generation

Ben Crystal & Alice Murphy

May 26, 2022

Contents

1 Introduction 2

2 Problem Definition and Algorithm 3

2.1 Task Definition . 3

2.2 Algorithm Definition . 3

3 Experimental Evaluation 5

3.1 Methodology . 5

3.2 Results . 7

3.3 Mac Miller: No Output . 7

3.4 Bob Dylan: Overfit or Nearly Random . 7

3.5 Discussion . 9

4 Related Work 11

5 Code and Dataset 13

6 Conclusion 14

7 Bibliography 15

Deep Learning Final
Page 1 of 15

1 Introduction

As musicians, many artists inspire us to create songs in similar styles. It is relatively easy to loosely imitate

the style of a pianist, a guitar player, or a beat-maker, but it can be very difficult and time consuming to

emulate a lyricist. To come up with wordings in a similar style to an artist requires not only an understanding

of the lyrics across their discographies, but also an understanding of what they are thinking and how they

came up with the words that they have incorporated in many of their songs. Additionally, it can be very

difficult to create lyrics for songs in general, especially given a small time frame. This project aimed to create

a deep learning architecture that learn an artist’s lyrical style and generate new lyrics based that artist.

The motivation for this project is to develop a neural network that will learn an artist’s style from their

work and have the ability to reproduce a new set of lyrics for the user. This project has many possible

applications. Musicians could create new songs in the style of musicians who are deceased to pay tribute

to them. They can train on multiple artists to blend their styles and create an entirely new approach to

lyricism. People can also use newly created lyrics in their favorite artists’ styles as inspiration for their own

vocals, as well as as unique fillers when recording tracks as a placeholder to build other aspects of a song

around. This can also be used to generate lyrics in a short amount of time, which is a situation that arises

when artists need “filler” lyrics when composing the rest of a track. The range of creative uses of these lyrics

is limitless. A potential commercial application of this process could be the implementation of an app that

locally generates lyrics to new songs either based on user preferences on a streaming service or on text notes

uploaded by the user themselves.

The team hypothesized that a computationally efficient network consisting of LSTM and fully connected

nodes could effectively produce new song lyrics based on the style of an artist’s existing corpus of lyrics.

The proposed architecture proved to be unsuccessful in this pursuit, often generating repetitive, existing,

or random lyrics, as will be discussed in the “Results” section. The team considers several next-steps to

improve the network design for semantic, stylized text, which can be found in the “Discussion” section.

Deep Learning Final
Page 2 of 15

2 Problem Definition and Algorithm

2.1 Task Definition

The algorithm is tasked with tailoring itself to individual artists’ writing styles in order to producing

new content while mimicking lyrics based on the artist’s existing songs. It must be able to take the input of

a seed, or user-defined starting characters, and output a continuation of lyrics for a user-specified duration.

Lyric generation networks are relatively new, but allowing users to customize the starting words and the

artist’s style is quite novel. This approach would assist in both creating tribute lyrics, for celebrating artists

that no longer produce music, and inspiring an individual’s attempt to write a song in an certain style, for

new musicians who seek to imitate their idol’s expression. This algorithm may also be helpful to lyricists

that need to push through writer’s block, which is the situation when creative people become stumped with

what should come next in their art. This type of block cannot happen to this generative algorithm, so it

provide the type of inspiration that a human collaborator would. Generative algorithms have the potential

to revolutionize the creative process and have already begun to both compete with and assist human artists.

2.2 Algorithm Definition

The algorithm selected for the purpose of style-based lyric generation was a very small character-based

approach. In particular, LSTM and bidirectional LSTM layers were chosen to “learn” how to generate text.

These layers are accepted by the machine learning community as a better approach to lyric generation than

RNNs, as the memory component allows them to consider information from “further back”, generating a

potentially more likely character. The bidirectional LSTM enables the algorithm to look both forward and

backward at the training text, to better conceptualize the context of each character in terms of previous and

future characters.

Deep Learning Final
Page 3 of 15

Figure 1: This figure shows the architecture used in this project. The yellow nodes represent the input
sequence of 20 characters, the green LSTM blocks represent the first LSTM layer, the blue LSTM blocks are
all part of the bidirectional LSTM layer, the gray nodes represent the outputs from the bidirectional LSTM
layer, and the red nodes correspond to the fully connected output layer. Note, this fully connected output
layer has 256 nodes, which can act as a one hot encoding for any ASCII character.

Figure 2: This figure is a summary of the architecture that trained its weights from scratch on the dataset.
The model totals 1,446,144 trainable weights.

Deep Learning Final
Page 4 of 15

3 Experimental Evaluation

3.1 Methodology

This project involved gathering a dataset of lyrics, grouped by artist. The website Genius.com[1] acted

as a valuable resource. This hub of lyrics benefits data scientists and music fanatics alike, providing accurate

data with thorough notation. Due to the many applications of Genius.com’s artist, song, and lyric data, a

powerful python module was created to interface with the site. This package, lyricsgenius[2], helped gather

the lyrics from artists’ most popular songs. For each artist, the words and notations from their top 40 songs,

as shown in Figure 3. These characters that make up the lyrics to these songs were then joined into one long

string per artist. These strings were filtered to remove most of the musical notation or punctuation that

would pose a challenge to the generative model. As seen in Figure 4, the text contained labels in brackets,

that indicated the section of the song, like the chorus, the verses, and the bridge. These labels are helpful

in sorting the song, but would be learned as parts of the lyrics if fed through the model. The raw text also

contained apostrophes written as the string literal: backslash-apostrophe. The backslashes and apostrophes

were removed to ensure that these were not viewed as valuable parts of words and that conjunctions (like

”can’t”, ”wasn’t”, and ”don’t”) were not viewed as two words, separated by punctuation. After the cleaning

of the strings, the numbers from the sections were retained, as seen in Figure 5. Characters were converted

to ASCII numbers to be interpreted and predicted by the algorithm, in an effort to produce language from

calculations.

Figure 3: The lyricsgenius package accesses song lyrics based on artist and enables the user to obtain the
most popular tracks.

Figure 4: The raw lyric strings contained sections labels, brackets, backslashes, and apostrophes.

Deep Learning Final
Page 5 of 15

Figure 5: After filtering, the artist strings contained only letters, spaces, and numbers. Note, this text still
poses problems, due to the repetition of spaces and meaningless numbers.

The lyrics were fed into the algorithm as normalized versions of ASCII integers. In other words, each

character in each artist’s string was converted to its ASCII code, an integer between 1 and 256. Then, these

numbers were divided by 256 to convert them from integers to floats between zero and one, as shown in

Figure 6. The model trained on sequences of length 20, meaning that the training data inputs were strings

of 20 characters, with corresponding outputs of the one character following the sequence, as shown in Figure

7. This method allows users to input a string of 20 character and loop the prediction algorithm to output

as many characters as they want.

Figure 6: After filtering, the artist strings contained only letters, spaces, and numbers. Note, this text still
poses problems, due to the repetition of spaces and meaningless numbers.

Figure 7: The algorithm trains itself on strings of length 20 and outputs of length 1 that correspond to the
next character in the lyrics.

In both human created and computer generated art, effective quantitative criteria to evaluate creative

pursuits has yet to be found. For this project, the overall success is based on qualitative human satisfaction.

Since songwriting, the human equivalent to this algorithm, is most often valued based on listener or reader

enjoyment, using this measure is fitting. However, the algorithm must be able to optimize a quantitative

function, without requiring constant human feedback when training. The algorithm will seek to minimize loss

and, during validation, it calculates the accuracy of prediction. The loss function and accuracy metric used for

optimization are sparse categorical cross entropy and sparse categorical accuracy, respectively. Categorical

cross entropy is a performance evaluating parameter used in multiclass categorization. While categorical

cross entropy works with one-hot encoded information, sparse categorical cross entropy takes integer inputs

and assumes equal distance between each of the values. This function was chosen in an effort to minimize the

Deep Learning Final
Page 6 of 15

memory needed to run the model. It effectively replaced one-hot vectors of length 256 with single integers.

The metric trained the algorithm’s ability to mimic character sequencing in lyrics, by equally penalizing all

incorrect predictions.

3.2 Results

3.3 Mac Miller: No Output

The network was trained on the lyrics of late rapper Mac Miller’s top 40 songs. The network training

ran for 20 epochs, which totalled roughly 12 hours of training. The network updated weights based on batch

sizes of 512 and the Adam optimizer at a learning rate of 0.001. The network weights were saved every 4

epochs, so, over the 24 epochs of training, 6 network weight files were saved. Using the final weightings, the

network generated 150 new characters based on the seed: ”When I was young and”. The resulting output

can be seen in Figure 8. The algorithm failed to predict ASCII values and it was later discovered that the

weights had reached ”NaN” values even before the 4th epoch (the first saved set of weights). This discovery

indicated the issue of exploding gradients.

Figure 8: The network weights reached unreal values and, thus, the outputs were not characters.

3.4 Bob Dylan: Overfit or Nearly Random

To remedy the exploding gradient problem, gradient clipping was implemented. This method sets a

maximum and minimum gradient value to ensure the values do not go outside of a useful range. For

this experiment, the Adam optimizer with a learning rate of 0.001 was used again, but the gradients were

constrained to ±0.5. The model sought to optimize its weights to maximize accuracy, shown in Figure 9, and

minimize loss, shown in Figure 10. The model trained on Bob Dylan’s top 40 songs for 20 epochs, taking

about 3 hours in total. The model weights were saved after every epoch.

Deep Learning Final
Page 7 of 15

Figure 9: The sparse categorical accuracy reached a peak value of 0.98.

Figure 10: The sparse categorical cross entropy reached a minimum of 0.8.

The generating code can take in any file of the network weights, any ASCII character seed of length 20,

and will output new text of any length. In the example shown in Figure 11, the seed ”when i look up i

see” was fed into the network with the weights from epoch 1, 5, 10, and 20. The outputs after epoch 1 and

5 both replicated existing Bob Dylan songs (Tempest and It’s Alright, Ma). After epochs 10 and 20, the

model began predicting new sequences of characters, but these patterns had no meaning to human users.

Interestingly, when the user set the model to predict a long steam of generated text, the model seemed to

produce some unique and some replicate lyrics. As shown in Figure 12, the seed ”its a beautiful spri” led to

mostly random outputs, with part of Tempest showing up again in a short burst. The model drifted between

reproducing existing lyrics and producing indiscriminate strings.

Deep Learning Final
Page 8 of 15

Figure 11: The earlier epochs output exact lyrics from Bob Dylan songs, their titles indicated in gray. As
the network got trained further, it started to output meaningless sequences of letters and words, sometimes
producing actual words.

Figure 12: The algorithm seems to periodically generate real song lyrics, but does not get stuck in these
existing sequences.

3.5 Discussion

While this model did not prove the hypothesis (that an inexpensive network could be used to learn to

write lyrics in a musician’s style), it pointed out some pitfalls of generative networks. The metrics used

Deep Learning Final
Page 9 of 15

for the learning can often lead to extremely high or low weightings. Over many epochs, this imbalance can

runaway, resulting in ”NaN” valued weightings. These incorrect weights can propagate through the network,

leading to ”NaN” outputs, which essentially fails the simple criteria of outputting a predicted character.

When the gradient was clipped, to prevent ”NaN” weights, the model showed signs of outfitting. These

signs initially showed up as existing lyric outputs, which indicated that the model learned the words to songs

rather than the abstract style of them. The mathematical signs of overfitting are shown in Figures 9 and 10,

where the accuracy became incredibly high and loss became unreasonably low after only about three epochs.

The constraints of the GPU (GTX970) restricted changes that could have fixed this issue. In particular, the

model could not be trained on more songs and could not be made any deeper.

This model architecture could potentially imitate an artist’s writing style, but not in an inexpensive

setting. If this constraint was not placed on the project, a longer sequence length could be implemented.

Poets and lyricists often connect ideas in songs that are space further than 20 characters apart, sometimes

bringing together ideas throughout multiple verses. Also, using only 40 songs to replicate an entire writing

style may have been ambitious. The intricate and abstract concept of a writing style should be trained on

an artist’s entire discography, not summarized using their most popular songs. Effectively conceptualizing

and imitating a style may require more data and computational power, but this project outlines a framework

that can be adjusted to work as hard as a user’s processor can handle.

Deep Learning Final
Page 10 of 15

4 Related Work

Three prior art sources will be briefly discussed in this section. The first is the original work on Long

Short-Term Memory (LSTM) networks, followed by a video on how an LSTM node is structured, and finally

a novel approach to text generation Generative Adversarial Networks (GANs).

The original LSTM network was developed in 1997 by Sepp Hochreiter and Jurgen Schmidhube[3] .

Their paper discusses the development of the gradient-based information storage method for both analysis

and generation techniques. They were tasked with developing a system that was faster and lighter than

previous models based on recurrent back propagation and succeeded. They noted that their particular

system would be capable of “remembering” large quantities of data at a time (over 1000 time steps of the

system that they used to justify their approach) while lowering the possibilities of a vanishing gradient

problem, which is thanks to the “forget gate” component. The forget gate allows the system to accumulate

new information at every timestep or process, and “forget” it once the information becomes obselete to the

meaning of whatever is being analyzed or the LSTM layer becomes oversaturated with information without

harming the meaning and weights of the whole network. It is a crucial addition and step in the machine

learning field, but certainly not the last one.

As a quick side note, to get a simpler briefing and understanding of back propagation, the team frequented

a video [4] that explained the inner workings of the input gate, the forget gate, and the output gate and how

the parts all interacted with one another. The diagram provided and discussed can be seen below in Figure

13.

Figure 13: Romeo Kienzler’s LSTM Schematic

Deep Learning Final
Page 11 of 15

LSTM layers are a very useful tool for training with semantic meaning. However, the model described

by both Hochreiter and Schmidhube and in the video uses a Unidirectional LSTM layer, which are not

necessarily the best for the application of semantic text generation. Instead, the team has implemented a

Bidirectional LSTM layer, which builds on their approach and surpasses it many fold. The core benefit of

a bidirectional LSTM layer for text generation in particular is that when training, an algorithm can look

at both previous and future time steps to truly reinforce the weights that it is learning. In the case of text

generation, this greatly increases the chances of selecting a “realistic” letter during each time step, which

leads to a more semantic and potentially powerful statement to be created.

The other novel prior art that helped inspire the direction of the team’s project was Sandeep Subramanian,

Sai Rajeswar, Alessandro Sordoni, Adam Trischler, Aaron Courville, and Christopher Pal1’s “Towards Text

Generation with Adversarially Learned Neural Outlines” [5], which was only published last year for the 2018

Montreal NeurIPS conference. This paper identifies that two of the most prominent fields of research in

machine learning at the moment are text generation and GANs. For those unfamiliar, a GAN is a duality of

networks where one network architecture, the generator, creates data (i.e. text, images, sounds, etc.) and

another, the discriminator, deciphers whether or not what the first created is decipherable from real data

that the generator was trained on. If the generator passes the discriminator’s test, then the discriminator

grows a keener eye, and if the discriminator catches the generator, the generator tries to refine its weights to

create better replicas of the true data. This particular paper is extremely novel, but it focuses primarily on

splitting generated text into realistic boundaries (i.e. when sentences should be started and stopped, when

a new paragraph or page should be created, etc.). Their network uses a multi-layer perceptron to alter fixed

length human generated sentences and see if the new sentences maintain proper structure and compares

to or surpasses a discriminator using an LSTM based generation approach. Meanwhile, the text used in

that latter network was based on a temperature based LSTM network, where the temperature introduces

elements of variability to an otherwise familiar LSTM network to that which the team created. Though our

network didn’t implement the use of a temperature parameter, the network architecture was very similar,

and they also neglected to implement bidirectionality into using a state of the art ARAE LSTM network.

Deep Learning Final
Page 12 of 15

5 Code and Dataset

The data scraping, network training, and text generation codes are all accessible through the GitHub

link below. This code allows users to retrain the architecture on the artist of their choosing, to generate

lyrics in virtually any musician’s style.

Click here to access code via GitHub.

Deep Learning Final
Page 13 of 15

6 Conclusion

The team learned several very valuable lessons throughout the process of working on their lyric generation

network. First and foremost, when attempting research that is not common knowledge in the field such as

this project, one should look deeper into prior art. Though it was not easy to find, there are recent additions

to the field in both bidirectional LSTM and GAN based text generation approaches. They need to be refined,

but that is the job of future research. On that note, in the future the team hopes to acquire pre-trained

language based models. Though this was also very difficult to find, the team would have been more likely

to generate realistic text samples if the model was trained on a longer text for the sake of learning semantic

English and general sentence structure, and then further trained for a few epochs to tailor a network to a

specific artist’s vernacular.

The next overlooked feature of a network design process is to better understand the loss and accuracy

functions available when evaluating a network. Since the team implemented a sparse categorical crossentropy

based loss function on a network with 256 input and output nodes, which is specifically valuable for single-

noded output layers, the results were not as expected and semantics didn’t correspond with higher accuracies

or lower losses. Additionally, though a main priority of the project was to make a network that was light

enough for mobile applications, the GPU available to the team (GTX 970) was not powerful enough to

run many more desirable iterations of the network, and as always more computational power is better for

creating and testing any network.

Finally, for future goals for this project, there are a few features that would be very nice to include

in a text generation network. As for lyrics in particular, not only do general song structures exist, but

those sections within (verses, choruses, etc.) contain different types of lyrics, with choruses being more

repetitive, shorter, and more powerful, while verses generally tell a longer story and contain larger vocabulary.

Training a network to develop lyrics following this pattern would be difficult but incredibly rewarding.

Additionally, using a GAN approach for matching an artist’s style could create much more realistic results.

If the discriminator network was trained on a particular artist, like Bob Dylan, the generator network would

get better and better at creating lyrics that seemed to be composed by Bob Dylan. Lastly, as was mentioned

prior, with a light network such as this, it would be relatively easy to implement on a mobile app or a

cloud-based network and sync up to an application like either a streaming service or notepad app. Users

would potentially be able to upload a playlist on a streaming service or a series of notes or poems that they

had composed themselves, and the pretrained light model would take a short amount of time to tailor itself

to said input and generate new lyrics or text in the style of whatever the user pleases.

Deep Learning Final
Page 14 of 15

7 Bibliography

References

[1] “Song Lyrics Knowledge,” Genius, 2019. [Online]. Available: https://genius.com/. [Accessed: Mar-

2019].

[2] J. W. Miller, “lyricsgenius,” PyPI, Mar-2019. [Online]. Available:

https://pypi.org/project/lyricsgenius/. [Accessed: May-2019].

[3] Sepp Hochreiter and Jurgen Schmidhube, ”Long Short-Term Memory”, Neural Computation, 1997.

[Online]. Available: https://www.bioinf.jku.at/publications/older/2604.pdf .

[4] Romeo Kienzler, ”Introduction to LSTM’s (Long Short Term Memory Networks) for DeepLearning”,

Coursera, 2018. [Online]. Available: https://www.youtube.com/watch?v=fyt59ho2okU .

[5] Sandeep Subramanian, Sai Rajeswar, Alessandro Sordoni, Adam Trischler, Aaron Courville,

and Christopher Pal1, ”Towards Text Generation with Adversarially Learned Neural Outlines”,

NeurIPS, 2018. [Online]. Available: https://papers.nips.cc/paper/7983-towards-text-generation-with-

adversarially-learned-neural-outlines.pdf .

Deep Learning Final
Page 15 of 15

	Introduction
	Problem Definition and Algorithm
	Task Definition
	Algorithm Definition

	Experimental Evaluation
	Methodology
	Results
	Mac Miller: No Output
	Bob Dylan: Overfit or Nearly Random
	Discussion

	Related Work
	Code and Dataset
	Conclusion
	Bibliography

